Baden-Württemberg Abitur Mathematik GK 2001
Aus WikiSchool
|
[Bearbeiten] Analysis 1
Gegeben ist eine Funktion f durch
Ihr Schaubild sei K.
- a)
- Untersuchen Sie K auf gemeinsame Punkte mit der x-Achse, Hoch-, Tief- und Wendepunkte. Zeichnen Sie K für (Längeneinheit 1cm).
- b)
- Die Parallelen zu den Koordinatenachsen durch den Hochpunkt bilden mit den Koordinatenachsen ein Rechteck.
In welchem Verhältnis teilt K die Rechteckfläche?
Lösung für a) & b)
- c)
- An K wird im Punkt P(u|f(u)) mit 2 < u < 6 die Tangente gelegt; schneidet die y-Achse in Q. Der Ursprung O bildet mit den Punkten P und Q ein Dreieck. Für welchen Wert von u wird der Flächeninhalt dieses Dreiecks maximal?
- d)
- Beim Kugelstoßen wird eine Kugel im Punkt R aus einer Höhe von 1,95 m unter einem Winkel von bezüglich der Horizontalen abgestoßen und landet im Punkt S auf dem Boden. Als Weite werden 11,0 m gemessen. Die Flugbahn der Kugel (siehe Skizze) kann näherungsweise durch eine ganzrationale Funktion zweiten Grades beschrieben werden.
Bestimmen Sie eine Gleichung der Flugbahn (Koeffizienten sinnvoll runden).
Unter welchem Winkel trifft die Kugel auf dem Boden auf?
[Bearbeiten] Weitere Aufgaben
[Bearbeiten] Links
Analysis 1 + Lösung
Kategorien: Mathematik | Abituraufgaben nach Jahr | Abituraufgaben nach Bundesland | Abituraufgaben nach Fach